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X-ray detection is widely used in research[1−3], product in-
spection[4],  nuclear  station,  and  medical  imaging.  Si[5], α-Se[6],
PbI2

[7],  and  CdZnTe[8] are  conventional  semiconductors,  and
some problems limit their applications. For instance, Si and α-
Se  have  low  stopping  power  for  X-ray[8],  which  hinders  their
application  in  high-energy  range  over  50  keV.  Moreover,  the
complicated preparation, high operating voltage, and high fab-
rication cost of these materials are the negative issues.

Perovskite materials are promising candidates for X-ray de-
tection  due  to  facile  synthesis[9−14] and  large  mobility-life-
time  (μτ)  products  for  highly  sensitive  detection.  The μτ
product of MAPbBr3 single crystal reaches 1.2 × 10–2 cm2 V–1[12],
which is  comparable to the μτ value of  CdZnTe[3].  Perovskite-
based  X-ray  detectors  also  exhibited  a  record  X-ray  sensitiv-
ity[15] of ~710 000 μC Gy–1 cm–2 and an ultralow detection lim-
it[16] of 0.62 nGy s–1. Tang et al. developed a hot-pressing meth-
od to grow quasi-monocrystalline CsPbBr3 films, which exhib-
its a superior sensitivity of 55 684 μC Gy–1 cm–2 and a low de-
tection  limit  of  215  nGy  s–1[17].  To  date,  halide  perovskites  in
various  forms  like  polycrystalline  films,  single  crystals,  and
nanocrystals  have  been  used  in  X-ray  detectors.  Especially,
polycrystalline films prepared by hot-pressing, coating or print-
ing have attracted great interests due to their superior flexibil-
ity, lightweight and facile synthesis.

In  comparison  to  brittle  single-crystal  films,  polycrystal-
line  films  can be  curved to  fit  non-flat  substrates,  thus  show-
ing potential for flexible X-ray detectors[18, 19]. Some high-qual-
ity  flexible  perovskite  films  were  prepared,  presenting  high
performance.  Liu et  al.[20] reported a  flexible  and printable  X-
ray detector  based on colloidal  CsPbBr3 QDs.  To enhance the
sensitivity,  they  effectively  reduced  the  surface  defects  and
tuned  crystallinity via chemical  engineering.  This  detector
can  sense  a  very  low  X-ray  dose  rate  (~17.2 μGy  s–1)  with  a
high  sensitivity  of  1450 μC  Gy–1 cm–2 at  0.1  V  bias.  Mean-
while,  the  vignetting  issues  can  be  effectively  alleviated,
leading  to  reduced  misdiagnosis.  400  cm2 MAPb(I0.9Cl0.1)3-
filled nylon membranes were used to make X-ray detectors[21].
The  devices  exhibited  a  high  sensitivity  of  ~8696 μC  Gy–1

cm–2 and  could  be  bent  at  2  mm  radius  without  perform-
ance loss (Figs. 1(a)–1(d)).

For  polycrystalline films,  besides  flexibility,  the facile  pre-
paration  of  large-area  and  thick  films  by  solution  processing

is  another  advantage  over  single  crystal  films.  Blade  coating
is  one  of  the  common  methods.  Kim et  al.[22] made  a  thick
polycrystalline  MAPbI3 film  by  this  method,  and  it  had  excel-
lent  optoelectronic  properties,  which  are  comparable  to
single  crystal  films.  The  device  had  a  thickness  of  830 μm
and  an  active  area  of  ~100  cm2 (Figs.  1(e)–1(g)).  In  order  to
minimize  dark  current  drift,  the  polycrystalline  films  should
have  high  crystallinity  and  large  grain  to  reduce  grain  boun-
daries.  He et  al.[23] made  a  quasi-2D  perovskite  film  with  low
defects  and  suppressed  ion  migration.  The  average  grain
size  was  31.88 μm.  Such  large  grain  size  resulted  from  co-
lloidal  particles  aggregating  in  the  slurry  with  PEA+,  which
can  decrease  nucleation  sites.  The  resulted μτ value  was
2.6  ×  10–5 cm2 V–1 and  the  minimum  current  drift  was  1.5  ×
10–2 pA cm–1 s–1 V–1.

The  perovskite  films  should  give  low  dark  current  to  en-
sure  high  X-ray  sensitivity.  The  patients  under  a  high  level  of
radiation  exposure  may  face  cancer  risk[24].  To  capture  clear
X-ray images under a low dose of X-ray is desired[25]. The detec-
tion limit  is  the minimum signal  which can be reliably  identi-
fied by  X-ray  detectors  and is  defined as  the equivalent  dose
rate  of  a  signal  3  times  greater  than  the  noise.  A  low  detec-
tion limit  results  from high current  signal  with low noise cur-
rent  dominated  by  dark  current,  which  can  reduce  the  ima-
ging capability of detectors under weak X-ray. Most polycrystal-
line perovskite detectors[17, 26] have large dark current densit-
ies of 50–500 nA cm–2 under an electrical field of 0.05 V μm–1

due  to  the  defective  structures  as  compared  to  single  crys-
tals.  To  solve  this  problem,  great  efforts  have  been  devoted
to improve the quality of perovskite films. Zhou et al.[27] repor-
ted  a  heterojunction  structure  formed  by  laminating  mem-
branes  filled  with  perovskites  with  different  bandgaps.  The
membranes  reduced  dark  current  density  of  the  devices  by
over  200  times  without  compromising  their  sensitivity.  They
captured clear X-ray images at a low dose rate of 32.2 nGy s–1

(Figs.  2(a)–2(c)).  Tang et  al.[23] also  proposed  a  new  strategy
to  suppress  ion  migration  by  inserting  2D  Ruddlesden-Pop-
per  layer  into  3D  perovskite  film.  The  quasi-2D  perovskite  X-
ray detector offered a sensitivity of  10 860 μC Gy–1 cm–2 with
a stable dark current.

Generally,  perovskite  films  should  have  a  thickness  of
hundreds  micrometers  for  sufficient  X-ray  absorption[28].
However,  it  is  very  difficult  to  make  such  films  by  spin-coat-
ing  or  blade-coating  methods.  First,  it  is  difficult  to  deposit  a
very  thick  wet  film  due  to  the  limitations  of  surface  tension
and  viscosity[29].  Second,  even  though  a  thick  wet  film  could
be  made,  it  is  still  difficult  to  obtain  perovskite  films  with
high  crystallinity  and  low  defect  density  (Figs.  2(d)  and 2(f)).
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To solve this issue, Wei et al.[30] developed an aerosol–liquid–
solid  (ALS)  method  to  make  perovskite  films  on  TFT  sub-
strates  by  spray  coating.  This  method  solved  the  problem  of
uncontrolled  crystallization  of  perovskites  (Figs.  2(e)  and
2(g)).  The  detectors  demonstrated  a  high  sensitivity  (~1.48  ×
105 μC  Gy–1 cm–2),  a  low  detection  limit  (280  nGy  s–1),  and
they could also realize high-resolution imaging.

In  summary,  high-quality  perovskite  films  featuring  large
area,  sufficient  thickness,  flexibility  and  high  sensitivity  are
prerequisites  for  high-performance  X-ray  detectors.  Per-
ovskite  X-ray  detectors  may  find  applications  in  security  in-
spection,  medical  imaging,  and  nondestructive  checking  in
the future. 
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